从零开始学shader
着色器(Shader)是运行在GPU上的小程序。这些小程序为图形渲染管线的某个特定部分而运行。从基本意义上来说,着色器只是一种把输入转化为输出的程序。着色器也是一种非常独立的程序,因为它们之间不能相互通信;它们之间唯一的沟通只有通过输入和输出。
现在我们会用一种更加广泛的形式详细解释着色器,特别是OpenGL着色器语言(GLSL)。针对gpu的并行特性,对语法里的if判断,我们要谨慎对待,稍有不慎,就会拾取并行特性导致效率下降
GLSL语言
着色器是使用一种叫GLSL的类C语言写成的。GLSL是为图形计算量身定制的,它包含一些针对向量和矩阵操作的有用特性。
着色器的开头总是要声明版本,接着是输入和输出变量、uniform和main函数。每个着色器的入口点都是main函数,在这个函数中我们处理所有的输入变量,并将结果输出到输出变量中。
一个典型的着色器有下面的结构
|
当我们特别谈论到顶点着色器的时候,每个输入变量也叫顶点属性(Vertex Attribute)。我们能声明的顶点属性是有上限的,它一般由硬件来决定。OpenGL确保至少有16个包含4分量的顶点属性可用,但是有些硬件或许允许更多的顶点属性,你可以查询GL_MAX_VERTEX_ATTRIBS来获取具体的上限
数据类型
基础类型
GLSL中包含C等其它语言大部分的默认基础数据类型:int、float、double、uint和bool。GLSL也有两种容器类型,它们会在这个教程中使用很多,分别是向量(Vector)和矩阵(Matrix)
GLSL中的向量是一个可以包含有2、3或者4个分量的容器,分量的类型可以是前面默认基础类型的任意一个。它们可以是下面的形式(n代表分量的数量):
类型 | 含义 |
---|---|
vecn | 包含n个float分量的默认向量 |
bvecn | 包含n个bool分量的向量 |
ivecn | 包含n个int分量的向量 |
uvecn | 包含n个unsigned int分量的向量 |
dvecn | 包含n个double分量的向量 |
大多数时候我们使用vecn,因为float足够满足大多数要求了。
一个向量的分量可以通过vec.x这种方式获取,这里x是指这个向量的第一个分量。你可以分别使用.x、.y、.z和.w来获取它们的第1、2、3、4个分量。GLSL也允许你对颜色使用rgba,或是对纹理坐标使用stpq访问相同的分量。
向量这一数据类型也允许一些有趣而灵活的分量选择方式,叫做重组(Swizzling)。重组允许这样的语法:
vec2 someVec; |
向量是一种灵活的数据类型,我们可以把它用在各种输入和输出上。学完教程你会看到很多新颖的管理向量的例子。
作用域
变量的范围由声明它的位置决定。如果它是在所有函数定义之外声明的,则它具有全局范围,从声明它的位置开始并持续到声明它的着色器的末尾。如果它是在 while 测试或 for 语句中声明的,那么它是范围到以下子语句的末尾。如果它是在 if 或 else 语句中声明的,则它的作用域是该语句的末尾。 (有关语句和子语句的位置,请参见“选择”和“迭代”。)否则,如果它被声明为复合语句中的语句,则其范围为该复合语句的末尾。如果它在函数定义中被声明为参数,则它的作用域一直到该函数定义的末尾。函数的参数声明和函数体共同构成嵌套在全局范围内的单个范围。 if 语句的表达式不允许声明新变量,因此不会形成新范围
储存限定符
限定符 | 含义 |
---|---|
无 | local read/write memory, or an input parameter to a function |
const | a variable whose value cannot be changed |
in | linkage into a shader from a previous stage, variable is copied in |
out | linkage out of a shader to a subsequent stage, variable is copied out |
attribute | 只能用在兼容模式的顶点着色器属性,相当于属性的 in |
uniform | 图元处理过程中不会改改你,充当着色器、API 和应用程序之间的连接 |
varying | 只能用在兼容模式的顶点着色器和片段着色器;相当于着色器之间的自定义输入输出in/out |
buffer | 一段现存, shader和api都可以修改它 |
shared | 只能用在计算着色器; variable storage is shared across all work items in a workgroup |
函数定义
和c语言不一样的是,数组可以直接作为形参实参传值的,而不是退化成指针.glsl里面没有指针.数组相当于是一种容器了
同名函数可以重载,参数一定要不一样
可以重定义内建函数,比如一些数学函数什么的.
main函数作为shader管线执行的入口点.
函数作用域为单个着色器,可以跨文件.比如多个顶点着色器链接,有且只有一个着色器里有main函数,其他函数在这个着色器作用域共享.不同着色器类型,函数不共享.
输入和输出
虽然着色器是各自独立的小程序,但是它们都是一个整体的一部分,出于这样的原因,我们希望每个着色器都有输入和输出,这样才能进行数据交流和传递。GLSL定义了in和out关键字专门来实现这个目的。每个着色器使用这两个关键字设定输入和输出,只要一个输出变量与下一个着色器阶段的输入匹配,它就会传递下去。但在顶点和片段着色器中会有点不同。
顶点着色器应该接收的是一种特殊形式的输入,否则就会效率低下。顶点着色器的输入特殊在,它从顶点数据中直接接收输入。为了定义顶点数据该如何管理,我们使用location这一元数据指定输入变量,这样我们才可以在CPU上配置顶点属性。我们已经在前面的教程看过这个了,layout (location = 0)。顶点着色器需要为它的输入提供一个额外的layout标识,这样我们才能把它链接到顶点数据。
也可以忽略layout (location = 0)标识符,通过在OpenGL代码中使用glGetAttribLocation查询属性位置值(Location)
另一个例外是片段着色器,它需要一个vec4颜色输出变量,因为片段着色器需要生成一个最终输出的颜色。如果你在片段着色器没有定义输出颜色,OpenGL会把你的物体渲染为黑色(或白色)。
所以,如果我们打算从一个着色器向另一个着色器发送数据,我们必须在发送方着色器中声明一个输出,在接收方着色器中声明一个类似的输入。当类型和名字都一样的时候,OpenGL就会把两个变量链接到一起,它们之间就能发送数据了(这是在链接程序对象时完成的)。
如果你定义了几何着色器,那么,所有的输入输出都需要经过几何着色器传递,你做不能只传递那些你需要在几何着色器里处理,就想着其他不处理的直接越过几何着色器,这是异想天开
//顶点着色器 |
uniform
Uniform是一种从CPU中的应用向GPU中的着色器发送数据的方式,但uniform和顶点属性有些不同。首先,uniform是全局的(Global)。全局意味着uniform变量必须在每个着色器程序对象中都是独一无二的,而且它可以被着色器程序的任意着色器在任意阶段访问。第二,无论你把uniform值设置成什么,uniform会一直保存它们的数据,直到它们被重置或更新。
|
我们在片段着色器中声明了一个uniform vec4的ourColor,并把片段着色器的输出颜色设置为uniform值的内容。因为uniform是全局变量,我们可以在任何着色器中定义它们,而无需通过顶点着色器作为中介。顶点着色器中不需要这个uniform,所以我们不用在那里定义它。
如果你声明了一个uniform却在GLSL代码中没用过,编译器会静默移除这个变量,导致最后编译出的版本中并不会包含它,这可能导致几个非常麻烦的错误,记住这点!
这个uniform现在还是空的;我们还没有给它添加任何数据,所以下面我们就做这件事。我们首先需要找到着色器中uniform属性的索引/位置值。当我们得到uniform的索引/位置值后,我们就可以更新它的值了。这次我们不去给像素传递单独一个颜色,而是让它随着时间改变颜色:
float timeValue = glfwGetTime(); |
首先我们通过glfwGetTime()获取运行的秒数。然后我们使用sin函数让颜色在0.0到1.0之间改变,最后将结果储存到greenValue里。
接着,我们用glGetUniformLocation查询uniform ourColor的位置值。我们为查询函数提供着色器程序和uniform的名字(这是我们希望获得的位置值的来源)。如果glGetUniformLocation返回-1就代表没有找到这个位置值。最后,我们可以通过glUniform4f函数设置uniform值。注意,查询uniform地址不要求你之前使用过着色器程序,但是更新一个uniform之前你必须先使用程序(调用glUseProgram),因为它是在当前激活的着色器程序中设置uniform的。
while(!glfwWindowShouldClose(window)) |
如果你在哪儿卡住了,可以到这里查看源码。
这里的代码对之前代码是一次非常直接的修改。这次,我们在每次迭代绘制三角形前先更新uniform值。如果你正确更新了uniform,你会看到你的三角形逐渐由绿变黑再变回绿色。可以看到,uniform对于设置一个在渲染迭代中会改变的属性是一个非常有用的工具,它也是一个在程序和着色器间数据交互的很好工具,但假如我们打算为每个顶点设置一个颜色的时候该怎么办?
更多属性
在前面的教程中,我们了解了如何填充VBO、配置顶点属性指针以及如何把它们都储存到一个VAO里。这次,我们同样打算把颜色数据加进顶点数据中。我们将把颜色数据添加为3个float值至vertices数组。我们将把三角形的三个角分别指定为红色、绿色和蓝色:
float vertices[] = { |
由于现在有更多的数据要发送到顶点着色器,我们有必要去调整一下顶点着色器,使它能够接收颜色值作为一个顶点属性输入。需要注意的是我们用layout标识符来把aColor属性的位置值设置为1:
//顶点着色器 |
因为我们添加了另一个顶点属性,并且更新了VBO的内存,我们就必须重新配置顶点属性指针。更新后的VBO内存中的数据现在看起来像这样:
知道了现在使用的布局,我们就可以使用glVertexAttribPointer函数更新顶点格式,
// 位置属性 |
glVertexAttribPointer函数的前几个参数比较明了。这次我们配置属性位置值为1的顶点属性。颜色值有3个float那么大,我们不去标准化这些值。
由于我们现在有了两个顶点属性,我们不得不重新计算步长值。为获得数据队列中下一个属性值(比如位置向量的下个x分量)我们必须向右移动6个float,其中3个是位置值,另外3个是颜色值。这使我们的步长值为6乘以float的字节数(=24字节)。 同样,这次我们必须指定一个偏移量。对于每个顶点来说,位置顶点属性在前,所以它的偏移量是0。颜色属性紧随位置数据之后,所以偏移量就是3 * sizeof(float),用字节来计算就是12字节。
这里使用了一段vbo来个两个属性传递数据,其实也可以生成两个vbo,来分别给两个属性传递数据.虽然vbo数目变多了,但总内存大小不变,而且如果有低耦合的需求的话,也就是cpu端属性数据是分开的,这样可能逻辑可能更清晰点
如果你在哪儿卡住了,可以到这里查看源码。
我们只提供了3个颜色,却看到一个大调色板。这是在片段着色器中进行的所谓片段插值(Fragment Interpolation)的结果。这正是我们需要利用的gpu并行特性,给定关键点信息,其他位置自动生成.
当渲染一个三角形时,光栅化(Rasterization)阶段通常会造成比原指定顶点更多的片段。光栅会根据每个片段在三角形形状上所处相对位置决定这些片段的位置。
基于这些位置,它会插值(Interpolate)所有片段着色器的输入变量。比如说,我们有一个线段,上面的端点是绿色的,下面的端点是蓝色的。如果一个片段着色器在线段的70%的位置运行,它的颜色输入属性就会是一个绿色和蓝色的线性结合;更精确地说就是30%蓝 + 70%绿。
这正是在这个三角形中发生了什么。我们有3个顶点,和相应的3个颜色,从这个三角形的像素来看它可能包含50000左右的片段,片段着色器为这些像素进行插值颜色。如果你仔细看这些颜色就应该能明白了:红首先变成到紫再变为蓝色。片段插值会被应用到片段着色器的所有输入属性上。
建立着色器类
具体看代码就好了.如果你在哪儿卡住了,可以到这里查看源码。